Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofactors ; 50(1): 89-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37470206

RESUMO

The synthesis rates of n-3 and n-6 polyunsaturated fatty acids (PUFAs) in rodents and humans are not agreed upon and depend on substrate availability independently of the capacity for synthesis. Therefore, we aimed to assess the activities of the enzymes for n-3 and n-6 PUFA synthesis pathways in liver, brain, testicle, kidney, heart, and lung, in relation to their protein concentration levels. Eight-week-old Balb/c mice (n = 8) were fed a standard chow diet (6.2% fat, 18.6% protein, and 44.2% carbohydrates) until 14 weeks of age, anesthetized with isoflurane and tissue samples were collected (previously perfused) and stored at -80°C. The protein concentration of the enzymes (Δ-6D, Δ-5D, Elovl2, and Elovl5) were assessed by ELISA kits; their activities were assayed using specific PUFA precursors and measuring the respective PUFA products as fatty acid methyl esters by gas chromatographic analysis. The liver had the highest capacity for PUFA biosynthesis, with limited activity in the brain, testicles, and kidney, while we failed to detect activity in the heart and lung. The protein concentration and activity of the enzymes were significantly correlated. Furthermore, Δ-6D, Δ-5D, and Elovl2 have a higher affinity for n-3 PUFA precursors compared to n-6 PUFA. The capacity for PUFA synthesis in mice mainly resides in the liver, with enzymes having preference for n-3 PUFAs.


Assuntos
Ácidos Graxos Dessaturases , Ácidos Graxos Ômega-3 , Humanos , Masculino , Animais , Camundongos , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Testículo/metabolismo , Fígado/metabolismo , Ácidos Graxos Insaturados/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Encéfalo/metabolismo , Rim/metabolismo
2.
Lipids ; 58(6): 257-270, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37997471

RESUMO

Consumption of a Western diet (WD) is known to increase the risk of obesity. Short or medium chain fatty acids influence energy metabolism, and triacetin, a synthetic short chain triacylglyceride, has been shown to lower body fat under normal conditions. This study aimed to investigate if triacetin as part of a WD modifies rat weight and body fat. Male rats were fed a control diet or WD for 8 weeks. At week 8, rats in the WD group were maintained on a WD diet or switched to a WD diet containing 30% energy from medium-chain triacylglyceride (WD-MCT) or triacetin (WD-T) for another 8 weeks. At week 16, rats were euthanized and liver, adipose and blood were collected. Tissue fatty acids (FAs) were quantified by gas chromatography (GC) and hepatic FAs were measured by GC-combustion-isotope ratio mass spectrometry for δ13 C-palmitic acid (PAM)-a novel marker of de novo lipogenesis (DNL). Rats fed WD-T had a body weight not statistically different to the control group, and gained less body weight than rats fed WD alone. Furthermore, WD-T fed rats had a lower fat mass, and lower total liver and plasma FAs compared to the WD group. Rats fed WD-T did not differ from WD in blood ketone or glucose levels, however, had a significantly lower hepatic δ13 C-PAM value than WD fed rats; suggestive of lower DNL. In summary, we show that triacetin has the potential to blunt weight gain and adipose tissue accumulation in a rodent model of obesity, possibly due to a decrease in DNL.


Assuntos
Obesidade , Triacetina , Ratos , Masculino , Animais , Triacetina/metabolismo , Triacetina/farmacologia , Peso Corporal , Cromatografia Gasosa-Espectrometria de Massas , Obesidade/metabolismo , Dieta , Fígado/metabolismo , Aumento de Peso , Ácidos Graxos/metabolismo
3.
Nutrients ; 15(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37432149

RESUMO

The apolipoprotein E4 (APOE4) genotype is predictive of Alzheimer's disease (AD). The brain is highly enriched with the omega-3 polyunsaturated fatty acid (n3-PUFA), docosahexaenoic acid (DHA). DHA's metabolism is defective in APOE4 carriers. Flavanol intake can play a role in modulating DHA levels. However, the impact of flavanol co-supplementation with fish oil on brain DHA uptake, status and partitioning, and according to APOE genotype is currently unknown. Here, using a humanised APOE3 and APOE4 targeted replacement transgenic mouse model, the interactive influence of cocoa flavanols (FLAV) and APOE genotype on the blood and subcortical brain PUFA status following the supplementation of a high fat (HF) enriched with DHA from fish oil (FO) was investigated. DHA levels increased in the blood (p < 0.001) and brain (p = 0.001) following supplementation. Compared to APOE3, a higher red blood cell (RBC) DHA (p < 0.001) was evident in APOE4 mice following FO and FLAV supplementation. Although FO did not increase the percentage of brain DHA in APOE4, a 17.1% (p < 0.05) and 20.0% (p < 0.001) higher DHA level in the phosphatidylcholine (PC) fraction in the HF FO and HF FO FLAV groups, and a 14.5% (p < 0.05) higher DHA level in the phosphatidylethanolamine (PE) fraction in the HF FO FLAV group was evident in these animals relative to the HF controls. The addition of FLAV (+/- FO) did not significantly increase the percentage of brain DHA in the group as a whole. However, a higher brain: RBC DHA ratio was evident in APOE3 only (p < 0.05) for HF FLAV versus HF. In conclusion, our data shows only modest effects of FLAV on the brain DHA status, which is limited to APOE3.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Camundongos Transgênicos , Lipidômica , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Encéfalo , Genótipo , Óleos de Peixe
4.
J Nutr Biochem ; 111: 109181, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36220526

RESUMO

The metabolism of docosahexaenoic acid (DHA), an omega-3 fatty acid, is different in carriers of APOE4, the main genetic risk factor for late-onset Alzheimer's disease. The brain relies on the plasma DHA pool for its need, but the plasma-liver-brain axis in relation to cognition remains obscure. We hypothesized that this relationship is compromised in APOE4 mice considering the differences in fatty acid metabolism between APOE3 and APOE4 mice. Male and female APOE3 and APOE4 mice were fed either a diet enriched with DHA (0.7 g DHA/100 g diet) or a control diet for 8 months. There was a significant genotype × diet interaction for DHA concentration in the liver and adipose tissue. In the cortex, a genotype effect was found where APOE4 mice had a higher concentration of DHA than APOE3 mice fed the control diet. There was a significant genotype × diet interaction for the liver and hippocampal arachidonic acid (AA). APOE4 mice had 20-30% lower plasma DHA and AA concentrations than APOE3 mice, independent of diet. Plasma and liver DHA levels were significantly correlated in APOE3 and APOE4 mice. In APOE4 mice, there was a significant correlation between plasma, adipose tissues, cortex DHA and the Barnes maze and/or with a better recognition index. Moreover, higher AA levels in the liver and the hippocampus of APOE4 mice were correlated with lower cognitive performance. Our results suggest that there is a plasma-liver-brain axis of DHA that is modified in APOE4 mice. Moreover, our data support that APOE4 mice rely more on plasma DHA than APOE3 mice, especially in cognitive performance. Any disturbance in plasma DHA metabolism might have a greater impact on cognition in APOE4 carriers.


Assuntos
Apolipoproteína E4 , Ácidos Graxos Ômega-3 , Humanos , Animais , Camundongos , Masculino , Feminino , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Alelos , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Araquidônico/metabolismo , Encéfalo/metabolismo , Fígado/metabolismo , Apolipoproteínas E/genética , Camundongos Transgênicos
5.
Aging Brain ; 2: 100046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36908881

RESUMO

Docosahexaenoic acid (DHA) consumption reduces spatial memory impairment in mice carrying the human apolipoprotein E ε4 (APOE4) allele. The current study evaluated whether astrocyte and microglia morphology contribute to the mechanism of this result. APOE3 and APOE4 mice were fed either a DHA-enriched diet or a control diet from 4 to 12 months of age. Coronal brain sections were immunostained for GFAP, Iba1, and NeuN. Astrocytes from APOE4 mice exhibited signs of reactive astrogliosis compared to APOE3 mice. Consumption of DHA exacerbated reactive astrocyte morphology in APOE4 carriers. Microglia from APOE4-control mice exhibited characteristics of amoeboid morphology and other characteristics of ramified morphology (more processes, greater process complexity, and greater distance between neighboring microglia). DHA enhanced ramified microglia morphology in APOE4 mice. In addition, APOE4 mice fed the DHA diet had lower hippocampal concentrations of interleukin-7, lipopolysaccharide-induced CXC chemokine and monocyte chemoattractant protein 1, and higher concentration of interferon-gamma compared to APOE4-control mice. Our results indicate that a diet rich in DHA enhances reactive astrogliosis and ramified microglia morphology in APOE4 mice.

6.
Br J Nutr ; 127(1): 68-77, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34027846

RESUMO

Dairy fat is rich in SFA such as palmitic acid (16:0) but low in linoleic acid (18:2n-6). The natural carbon 13 enrichment (δ13C) of 16:0 is higher in dairy fat than in most of the food supply. In adults, serum levels of pentadecanoic acid (15:0) and heptadecanoic acid (17:0) are recognised as biomarkers of dairy intake. In adolescents, no study has evaluated serum fatty acid levels or δ13C in response to chronic dairy consumption. The objectives of this study were to evaluate whether increased dairy product consumption can modulate (1) serum fatty acid levels and (2) 16:0 δ13C in adolescents with overweight/obesity who followed a 12-week weight management programme. This secondary analysis of a randomised control trial included two groups of adolescent females: recommended dairy (RDa; n 23) and low dairy (LDa; n 23). The RDa group was given 4 servings/d of dairy products while the LDa group maintained dairy intakes at ≤ 2 servings/d. Blood was sampled before and after the intervention. Lipids were extracted and separated, and fatty acids were quantified by GC. Isotope ratio MS was used to assess 16:0 δ13C. There were no group differences on serum changes of 15:0 or 17:0. Within TAG, 18:2n-6 was lowered by 7·4 % only in the RDa group (P = 0·040). The difference in delta 16:0 δ13C between the LDa and RDa groups did not reach statistical significance (P = 0·070). Reductions in serum 18:2n-6 by dairy consumption could have positive health implications, but more studies are needed to confirm this assertion.


Assuntos
Ácido Linoleico , Sobrepeso , Adolescente , Adulto , Laticínios/análise , Ácidos Graxos , Feminino , Humanos , Obesidade
7.
Transl Psychiatry ; 11(1): 535, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663786

RESUMO

Child abuse (CA) strongly increases the lifetime risk of suffering from major depression and predicts an unfavorable course for the illness. Severe CA has been associated with a specific dysregulation of oligodendrocyte function and thinner myelin sheaths in the human anterior cingulate cortex (ACC) white matter. Given that myelin is extremely lipid-rich, it is plausible that these findings may be accompanied by a disruption of the lipid profile that composes the myelin sheath. This is important to explore since the composition of fatty acids (FA) in myelin phospholipids can influence its stability, permeability, and compactness. Therefore, the objective of this study was to quantify and compare FA concentrations in postmortem ACC white matter in the choline glycerophospholipid pool (ChoGpl), a key myelin phospholipid pool, between adult depressed suicides with a history of CA (DS-CA) matched depressed suicides without CA (DS) and healthy non-psychiatric controls (CTRL). Total lipids were extracted from 101 subjects according to the Folch method and separated into respective classes using thin-layer chromatography. FA methyl esters from the ChoGpl fraction were quantified using gas chromatography. Our analysis revealed specific effects of CA in FAs from the arachidonic acid synthesis pathway, which was further validated with RNA-sequencing data. Furthermore, the concentration of most FAs was found to decrease with age. By extending the previous molecular level findings linking CA with altered myelination in the ACC, these results provide further insights regarding white matter alterations associated with early-life adversity.


Assuntos
Maus-Tratos Infantis , Transtorno Depressivo Maior , Suicídio , Criança , Ácidos Graxos , Giro do Cíngulo , Humanos , Fosfolipídeos
8.
Eur J Neurosci ; 54(9): 7092-7108, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34549475

RESUMO

Olfactory dysfunction is observed in several neurological disorders including Mild Cognitive Impairment (MCI) and Alzheimer disease (AD). These deficits occur early and correlate with global cognitive performance, depression and degeneration of olfactory regions in the brain. Despite extensive human studies, there has been little characterization of the olfactory system in models of AD. In order to determine if olfactory structural and/or molecular phenotypes are observed in a model expressing a genetic risk factor for AD, we assessed the olfactory bulb (OB) in APOE4 transgenic mice. A significant decrease in OB weight was observed at 12 months of age in APOE4 mice concurrent with inflammation and decreased NeuN expression. In order to determine if a diet rich in omega-3s may alleviate the olfactory system phenotypes observed, we assessed WT and APOE4 mice on a docosahexaenoic acid (DHA) diet. APOE4 mice on a DHA diet did not present with atrophy of the OB, and the alterations in NeuN and IBA-1 expression were alleviated. Furthermore, alterations in caspase mRNA and protein expression in the APOE4 OB were not observed with a DHA diet. Similar to the human AD condition, OB atrophy is an early phenotype in the APOE4 mice and concurrent with inflammation. These data support a link between the structural olfactory brain region atrophy and the olfactory dysfunction observed in AD and suggest that inflammation and cell death pathways may contribute to the olfactory deficits observed. Furthermore, the results suggest that diets enriched in DHA may provide benefit to APOE4 allele carriers.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Ácidos Docosa-Hexaenoicos/fisiologia , Transtornos do Olfato/dietoterapia , Bulbo Olfatório , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Animais , Apolipoproteína E4/genética , Atrofia , Dieta , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Transtornos do Olfato/etiologia , Transtornos do Olfato/genética , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia
9.
Am J Clin Nutr ; 114(4): 1523-1534, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34254983

RESUMO

BACKGROUND: Infants born at very low birth weight (VLBW) are vulnerable to deficits in fatty acids (FAs) but little is known of factors that influence the intakes or composition of their human milk feeds. OBJECTIVES: We aimed to identify sources of variability in the fat composition of human milk fed to VLBW infants and examine the impact of milk source (mother's own or donor) on fat and FA intakes. METHODS: Serial samples of mother's milk (n = 476) and donor milk (n = 53) fed to infants born weighing <1250 g (n = 114 infants from 100 mothers) were collected [Optimizing Mothers' Milk for Preterm Infants (OptiMoM) randomized clinical trial]. Fat and FA were analyzed using a mid-infrared human milk analyzer and GC with flame ionization detection. RESULTS: At full enteral feeding, donor milk is estimated to provide 1.3 g · kg-1 · d-1 less total fat than mature mother's milk (recommended intake: 4.8 g · kg-1 · d-1), and 5-9 mg · kg-1 · d-1 less DHA (22:6n-3) and arachidonic acid (20:4n-6) (estimated average requirement: 55-60 and 35-45 mg · kg-1 · d-1, respectively) than colostrum or transitional milk. Similar deficits were observed in measured intakes of a subset of OptiMoM infants. In multivariable-adjusted models, maternal ethnicity had medium to large [≥0.5 SD score (SDS)] effects on DHA, SFAs, and MUFAs. Mothers with prepregnancy BMI in overweight and obese categories had higher milk total fat (ß: 0.35; 95% CI: 0.10, 0.61 and ß: 0.46; 95% CI: 0.16, 0.77 SDS, respectively). Those with BMI ≥30 in addition had higher proportions of SFAs (ß: 0.61; 95% CI: 0.33, 0.89 SDS) and lower DHA (ß: -0.54; 95% CI: -0.89, -0.20 SDS). Other factors, such as gestational age and income, were also associated with FA composition. CONCLUSIONS: The fat and FA content of human milk fed to VLBW infants is variable. Care must be taken to ensure fat and FA intakes meet recommendations, particularly when feeding a high proportion of donor milk.This trial was registered at clinicaltrials.gov as NCT02137473.


Assuntos
Ácidos Graxos/química , Leite Humano/química , Colostro/química , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Masculino , Mães , Gravidez
10.
Nutrients ; 13(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803760

RESUMO

The role of docosahexaenoic acid (DHA) and arachidonic acid (AA) in neurogenesis and brain development throughout the life cycle is fundamental. DHA and AA are long-chain polyunsaturated fatty acids (LCPUFA) vital for many human physiological processes, such as signaling pathways, gene expression, structure and function of membranes, among others. DHA and AA are deposited into the lipids of cell membranes that form the gray matter representing approximately 25% of the total content of brain fatty acids. Both fatty acids have effects on neuronal growth and differentiation through the modulation of the physical properties of neuronal membranes, signal transduction associated with G proteins, and gene expression. DHA and AA have a relevant role in neuroprotection against neurodegenerative pathologies such as Alzheimer's disease and Parkinson's disease, which are associated with characteristic pathological expressions as mitochondrial dysfunction, neuroinflammation, and oxidative stress. The present review analyzes the neuroprotective role of DHA and AA in the extreme stages of life, emphasizing the importance of these LCPUFA during the first year of life and in the developing/prevention of neurodegenerative diseases associated with aging.


Assuntos
Ácido Araquidônico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nutrientes/farmacologia , Envelhecimento/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Humanos , Doenças Neurodegenerativas/metabolismo , Neurogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
11.
Nutrients ; 13(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374585

RESUMO

Abstract: Prenatal and postnatal development are closely related to healthy maternal conditions that allow for the provision of all nutritional requirements to the offspring. In this regard, an appropriate supply of fatty acids (FA), mainly n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFA), is crucial to ensure a normal development, because they are an integral part of cell membranes and participate in the synthesis of bioactive molecules that regulate multiple signaling pathways. On the other hand, maternal obesity and excessive gestational weight gain affect FA supply to the fetus and neonate, altering placental nutrient transfer, as well as the production and composition of breast milk during lactation. In this regard, maternal obesity modifies FA profile, resulting in low n-3 and elevated n-6 PUFA levels in maternal and fetal circulation during pregnancy, as well as in breast milk during lactation. These modifications are associated with a pro-inflammatory state and oxidative stress with short and long-term consequences in different organs of the fetus and neonate, including in the liver, brain, skeletal muscle, and adipose tissue. Altogether, these changes confer to the offspring a higher risk of developing obesity and its complications, as well as neuropsychiatric disorders, asthma, and cancer. Considering the consequences of an abnormal FA supply to offspring induced by maternal obesity, we aimed to review the effects of obesity on the metabolism and bioavailability of FA during pregnancy and breastfeeding, with an emphasis on LCPUFA homeostasis.


Assuntos
Aleitamento Materno , Ácidos Graxos Insaturados/metabolismo , Obesidade Materna/metabolismo , Feminino , Desenvolvimento Fetal , Humanos , Fenômenos Fisiológicos da Nutrição Materna , Leite Humano/metabolismo , Placenta/metabolismo , Gravidez/metabolismo
12.
Appl Physiol Nutr Metab ; 45(12): 1368-1376, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32585124

RESUMO

Chronic high-fat diet feeding is associated with obesity and accumulation of fat in the liver, leading to the development of insulin resistance and nonalcoholic fatty liver disease. This condition is characterized by the presence of a high number of intrahepatic lipid droplets (LDs), with changes in the perilipin pattern covering them. This work aimed to describe the distribution of perilipin (Plin) 2, an LD-associated protein involved in neutral lipid storage, and Plin5, which favors lipid oxidation in LD, and to evaluate lipid peroxidation through live-cell visualization using the lipophilic fluorescent probe C11-BODIPY581/591 in fresh hepatocytes isolated from mice fed a high-fat diet (HFD). Male C57BL/6J adult mice were divided into control and HFD groups and fed with a control diet (10% fat, 20% protein, and 70% carbohydrates) or an HFD (60% fat, 20% protein, and 20% carbohydrates) for 8 weeks. The animals fed the HFD showed a significant increase of Plin2 in LD of hepatocytes. LD from HFD-fed mice have a stronger lipid peroxidation level than control hepatocytes. These data provide evidence that obesity status is accompanied by a higher degree of lipid peroxidation in hepatocytes, both in the cytoplasm and in the fats stored inside the LD. Novelty Our study shows that lipid droplets from isolated hepatocytes in HFD-fed mice have a stronger lipid peroxidation level than control hepatocytes. C11-BODIPY581/591 is a useful tool to measure the initial level of intracellular lipid peroxidation in single isolated hepatocytes. Perilipins pattern changes with HFD feeding, showing an increase of Plin2 covering lipid droplets.


Assuntos
Hepatócitos/metabolismo , Gotículas Lipídicas/metabolismo , Peroxidação de Lipídeos , Obesidade/metabolismo , Perilipina-2/metabolismo , Animais , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL
14.
Lipids ; 54(11-12): 755-761, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31782523

RESUMO

Dried blood spots for fatty acid profiling are increasing in popularity; however, variability in results between laboratories has not been characterized. Whole blood from two subjects (low and high n-3 polyunsaturated fatty acid [PUFA] status) was collected, 25 µL applied to butylated hydroxytoluene (BHT)-treated chromatography strips, dried in air, and shipped to five laboratories. Results were reported as "routine" (typical fatty acids for each laboratory) or "standardized" (a set of 19 fatty acids), and outliers and variability (%CV) were determined. Five and eight outliers of a possible 91 measures each were identified by routine and standardized reporting, respectively, including eicosapentaenoic acid (EPA, 20:5n-3) in the low n-3 PUFA sample and arachidonic acid in the high n-3 PUFA sample. By standardized reporting, no outliers were identified for EPA or docosahexaenoic acid (DHA, 22:6n-3), and %CV decreased from 8.6% to 6.0% and 9.1% to 6.6% for EPA and 10.5% to 7.2% and 10.5% to 6.6% for DHA in the low and high n-3 PUFA sample, respectively. In conclusion, fatty acid profiles yielded few outliers, and standardization of reporting reduced the variability between laboratories.


Assuntos
Teste em Amostras de Sangue Seco , Ácidos Graxos/sangue , Humanos
16.
Cell Stem Cell ; 24(4): 621-636.e16, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30930145

RESUMO

Tafazzin (TAZ) is a mitochondrial transacylase that remodels the mitochondrial cardiolipin into its mature form. Through a CRISPR screen, we identified TAZ as necessary for the growth and viability of acute myeloid leukemia (AML) cells. Genetic inhibition of TAZ reduced stemness and increased differentiation of AML cells both in vitro and in vivo. In contrast, knockdown of TAZ did not impair normal hematopoiesis under basal conditions. Mechanistically, inhibition of TAZ decreased levels of cardiolipin but also altered global levels of intracellular phospholipids, including phosphatidylserine, which controlled AML stemness and differentiation by modulating toll-like receptor (TLR) signaling.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Mitocôndrias/enzimologia , Fosfolipídeos/metabolismo , Fatores de Transcrição/metabolismo , Aciltransferases , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/deficiência
17.
Mol Nutr Food Res ; 63(9): e1801224, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30768751

RESUMO

SCOPE: Docosahexaenoic acid (DHA, 22:6n-3) is crucial for optimal neuronal development and function, but the brain has a poor capacity to synthesize this fatty acid. When consumed acutely esterified to phosphatidylcholine, DHA is more efficient at targeting the brain than when consumed esterified to triacylglycerol. However, the brain DHA bioavailability of other forms of DHA-containing phospholipids, after oral ingestion, is unknown. The objective of this study is to compare brain uptake of DHA after acute gavage with different DHA carriers. METHODS AND RESULTS: Ten-week-old rats were gavaged with 3 H-labeled DHA esterified to phosphatidylcholine (DHA-PtdCho), phosphatidylethanolamine (DHA-PtdEtn), phosphatidylserine (DHA-PtdSer) or triacylglycerol (DHA-TG). Six hours post-gavage, the animals were euthanized and radioactivity was quantified in the cortex and serum lipid classes. Radioactivity recovered in cortex total phospholipids was similar between the DHA-PtdCho and DHA-PtdSer groups and were 5.8 and 6.7 times higher than in the DHA-TG group, respectively. Serum total lipid radioactivity was higher in the DHA-PtdSer group than in the DHA-PtdCho and DHA-PtdEtn groups, but not compared to the DHA-TG group. CONCLUSION: These results suggest that different mechanisms must be present to explain the serum and brain bioavailability differences between DHA-PtdCho and DHA-PtdSer, but these require further investigation.


Assuntos
Encéfalo/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacocinética , Fosfatidiletanolaminas/farmacocinética , Fosfatidilserinas/farmacocinética , Triglicerídeos/farmacocinética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/sangue , Esterificação , Fosfatidiletanolaminas/sangue , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/sangue , Fosfatidilserinas/metabolismo , Fosfolipídeos/sangue , Fosfolipídeos/metabolismo , Ratos Long-Evans , Distribuição Tecidual , Triglicerídeos/sangue , Triglicerídeos/metabolismo
18.
J Nutr ; 149(4): 586-595, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715388

RESUMO

BACKGROUND: Eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) recommendations are frequently stated at 500 mg/d; however, adherence to these recommendations would result in a large global commercial EPA/DHA production deficit. Previously, our laboratory demonstrated that acute DHA intake in rats can increase the capacity for synthesis-secretion of n-3 (ω-3) polyunsaturated fatty acids (PUFAs). OBJECTIVE: We aimed to investigate the utility of a dietary DHA cycling strategy that employs 2 wk of repeated DHA feeding for a total of 3 cycles over 12 wk. METHODS: Male Long-Evans rats were fed a 10% fat diet by weight comprised of either 1) a 2-wk, 2% α-linolenic acid (ALA, DHA-ALA group 18:3n-3) diet followed by a 2-wk, 2% DHA + 2% ALA diet over 3 consecutive 4-wk periods ("DHA cycling," DHA-ALA group); 2) a 2% DHA + 2% ALA diet (DHA group) for 12 wk; or 3) a 2% ALA-only diet (ALA group) for 12 wk. At 15 wk old, blood and tissue fatty acid concentrations and liver mRNA expression and 13C-DHA natural abundances were determined. RESULTS: DHA concentrations in plasma, erythrocytes, and whole blood between the DHA-ALA group and the DHA groups were not different (P ≥ 0.05), but were 72-110% higher (P < 0.05) than in the ALA group. Similarly, DHA concentrations in liver, heart, adipose, and brain were not different (P ≥ 0.05) between the DHA-fed groups, but were at least 62%, 72%, 320%, and 68% higher (P < 0.05) than in the ALA group in liver, heart, adipose, and skeletal muscle, respectively. Compound-specific isotope analysis indicated that 310% more liver DHA in the DHA-ALA group compared with the DHA group is derived from dietary ALA, and this was accompanied by a 123% and 93% higher expression of elongation of very long-chain (Elovl)2 and Elovl5, respectively, in the DHA-ALA group compared with the ALA group. CONCLUSIONS: DHA cycling requires half the dietary DHA while achieving equal blood and tissue DHA concentrations in rats. Implementation of such dietary strategies in humans could reduce the gap between global dietary n-3 PUFA recommendations and commercial production.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido alfa-Linolênico/metabolismo , Tecido Adiposo/química , Animais , Química Encefálica , Ácidos Docosa-Hexaenoicos/administração & dosagem , Relação Dose-Resposta a Droga , Esquema de Medicação , Eritrócitos , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Vacina contra Caxumba/química , Músculo Esquelético/química , Miocárdio/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans
19.
J Lipid Res ; 60(2): 412-420, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30573561

RESUMO

Tetracosahexaeoic acid (THA; 24:6n-3) is thought to be the immediate precursor of DHA in rodents; however, the relationship between THA and DHA metabolism has not been assessed in vivo. Here, we infused unesterified 2H5-THA and 13C22-DHA, at a steady state, into two groups of male Long-Evans rats and determined the synthesis-secretion kinetics, including daily synthesis-secretion rates of all 20-24 carbon n-3 PUFAs. We determined that the synthesis-secretion coefficient (a measure of the capacity to synthesize a given fatty acid) for the synthesis of DHA from plasma unesterified THA to be 134-fold higher than for THA from DHA. However, when considering the significantly higher endogenous plasma unesterified DHA pool, the daily synthesis-secretion rates were only 7-fold higher for DHA synthesis from THA (96.3 ± 31.3 nmol/d) compared with that for THA synthesis from DHA (11.4 ± 4.1 nmol/d). Furthermore, plasma unesterified THA was converted to DHA and secreted into the plasma at a 2.5-fold faster rate than remaining as THA itself (26.2 ± 6.3 nmol/d), supporting THA's primary role as a precursor to DHA. In conclusion, using a 3 h infusion model in rats, we demonstrate for the first time in vivo that DHA is both a product and a precursor to THA.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Animais , Meia-Vida , Hidrólise , Marcação por Isótopo , Cinética , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...